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Abstract

Generative 3D Painting is among the top productivity
boosters in high-resolution 3D asset management and recy-
cling. Ever since text-to-image models became accessible
for inference on consumer hardware, the performance of
3D Painting methods has consistently improved and is cur-
rently close to plateauing. At the core of most such models
lies denoising diffusion in the latent space, an inherently
time-consuming iterative process. Multiple techniques have
been developed recently to accelerate generation and re-
duce sampling iterations by orders of magnitude. Designed
for 2D generative imaging, these techniques do not come
with recipes for lifting them into 3D. In this paper, we ad-
dress this shortcoming by proposing a Latent Consistency
Model (LCM) adaptation for the task at hand. We analyze
the strengths and weaknesses of the proposed model and
evaluate it quantitatively and qualitatively. Based on the
Objaverse dataset samples study, our 3D painting method
attains strong preference in all evaluations. Source code is
available at https://github.com/kongdai123/consistency2.

1. Introduction
Recently, we witnessed a breakthrough in generative 3D con-
tent creation and painting [6, 21, 24], empowering content
creators and 3D artists to recycle old 3D assets or proto-
type texture design ideas using simple text prompts. These
methods either involve end-to-end optimization with the dif-
fusion model as guidance through score distillation sampling
(SDS) [21], which takes thousands of iterations to converge,
or they iteratively denoise multi-view images in latent space,
which involves tens to hundreds of denoising iterations for
standard Latent Diffusion Models (LDMs) [25]. On top of
that, new techniques in diffusion sampling have been de-
veloped to speed up the generation process. In particular,
Latent Consistency Models (LCMs) [16, 28] enable one-step
generation by learning to directly map noise to data while
retaining the option of multi-step sampling that trades run-
time for better generation quality. Despite the significant
speed-up that LCMs bring to image generation, exploration
of their efficient operation in 3D has barely started.

We present Consistency2, a fast way to generate multi-
view consistent surface textures of a mesh using latent
consistency models. Our work takes accelerated text-to-
image diffusion models, particularly LCMs, and lifts their
generative power to 3D in the task of generative mesh paint-
ing. The key to successful lifting lies in achieving view-
consistent painting while not compromising speed and gen-
eration quality. We tackle this problem from the perspective
of multi-view denoising, where we tailor our painting proce-
dure to the few-step sampling process of LCMs. Our method
can generate high-quality mesh paintings in 4 timesteps per
view, taking less than two minutes per mesh on a single
consumer GPU. Consistency2 provides a quick way for 3D
content creators to prototype painting designs from text de-
scriptions. Overall, it is much faster than most previous
mesh painting methods.
Our contributions can be summarised in the following:
• We introduce the first recipe for mesh painting by multi-

view denoising LCMs, benefiting from their few-step sam-
pling process.

• We design a novel painting representation with separate
noise and color textures. By applying appropriate inter-
polation techniques to each, we gain greater flexibility in
texture resolution choice and camera view sampling.

• We apply our method to a diverse range of 3D meshes
(Fig. 1), demonstrating competitive quality and runtime.

2. Related Work
Diffusion and Consistency Models Denoising diffusion
probabilistic models (DDPMs) [11] have recently achieved
state-of-the-art results in high-quality and photorealistic im-
age generation. LDMs [20, 25] shift the denoising process
to low dimensional latent space, reducing computational re-
quirements while achieving competitive quality. Through
frameworks such as ControlNet [34], these models have
been further conditioned on various modalities such as depth
maps, images, and segmentation masks.

Numerous improvements have been proposed to accel-
erate image generation [15, 26, 28]. Consistency models,
proposed by Song et al. [28], emerge as a new category of
diffusion models that enable one- or few-step generation
from noise to data. Consistency models are formulated with
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Figure 1. Selected painting results of Objaverse [8] meshes using Consistency2. Our method paints detailed high-resolution textures with
very few denoising diffusion steps and allows for free camera pose selection for view painting.

the property of self-consistency, where points on the same
Probability Flow ODE trajectory map to the same data sam-
ple [27]. LCMs [16] extend consistency distillation to the
latent space, allowing distillation from LDMs.

Generating 3D with Diffusion Guided Optimization
Alongside advancements in 2D image diffusion models,
there has been an increasing interest in leveraging these
models to generate 3D objects. One line of work is genera-
tion through end-to-end optimization of 3D scene parameters
using a differentiable renderer, guided by the supervision of
a 2D image diffusion model through Score Distillation Sam-
pling (SDS) [6, 7, 17, 21, 22, 29, 30, 33]. This technique
is first introduced in DreamFusion [21] with Neural Radi-
ance Fields (NeRF) [18] as the 3D representation. Since
then, this recipe has been applied to alternative 3D rep-
resentations such as textured meshes [7, 17, 30], implicit
surface representations [9, 22], BRDF materials [6], and
3D Gaussians [12, 29]. Despite their flexibility, SDS meth-
ods converge slowly and produce oversaturated results [21].
Moreover, they do not benefit from LCM speedups as LCM
is tailored to generation through denoising.

Multi-view and Multi-patch Diffusion Generation Since
diffusion models are often trained on images with a fixed
resolution, there has been a lot of interest in using these
models to generate surfaces of arbitrary size, such as panora-
mas [2, 14, 32, 35] and 3D in the context of mesh paint-
ing [4, 6, 24, 31]. For panorama generation, MultiDiffu-
sion [2] proposes breaking down a large canvas into over-

lapping patches and fusing intermediate denoising results
using a weighted average. Generative Powers-of-10 [32]
generates view-consistent image zoom-ins by conducting
multi-scale sampling across zoom levels in both color and
noise spaces. On the 3D side, a line of work exists on gen-
erating textures for a given 3D geometry using multi-view
denoising with the same image diffusion model [4, 5, 24, 31].
TEXTure [24] pioneered this approach by denoising each
camera view one after another and back-projecting each iter-
ation to a texture map using rasterizer-based differentiable
rendering. One work that shares the idea of combining the
intermediate multi-view denoising results with our approach
is TexFusion [4]. However, that method uses a single latent
texture map, which limits its flexibility in terms of texture
resolution and camera pose selection.

3. Methods
Prerequisites Given a 3D mesh and a text description, we
aim to achieve fast, view-consistent mesh painting. We con-
sider only pre-trained depth- and text-conditioned LCMs
to ensure fast operation. Inspired by works such as Tex-
Fusion [4] and TEXTure [24], we parameterize the surface
with 2D texture maps. Compared to neural radiance or color
fields exhibiting greater flexibility [31], mesh textures are
a desirable representation for painting since they are in-
herently view-consist (when mipmapped, see below) and
come attached to the geometry. Unlike TexFusion [4] and
TEXTure [24], we employ two different texture map layers
to render the noise state and the predicted content sepa-
rately. This design choice is inspired by Generative Powers-



Figure 2. We project a mesh textured with latent noise using various
texture interpolation methods. The naive bilinear interpolation
(left) disturbs the latent probability distribution and gives poor
results. Our variance-preserving noise rendering (middle) results
in a similar denoised quality of the mesh compared to just using a
noise latent without any projection as a reference (right). VarInit
denotes the variance of the initial projected noise.

of-10 [32], where it is demonstrated that such a separation
helps fuse a stack of 2D images at different zoom levels.
We extrapolate this idea to meshes in 3D and consider the
process of rendering a mesh with multiple virtual cameras
similar to sampling overlapping patches on the texture map
with different degrees of magnification, which depend on the
local mesh curvature and distance to the camera. However,
Generative Powers-of-10 [32] uses a proprietary diffusion
model [22] operating directly in the RGB pixel space. Con-
trary to that, modern high-quality open-source LDMs [25]
operate in the latent space to save computational resources.

We empirically found manipulating multi-view latents
challenging and resulting in poor novel view synthesis. On
the other hand, the RGB pixel space has well-established
and understood strategies for interpolation, such as mipmap-
ping [1, 13]. Mipmapping involves an intermediate stack
of downsampled textures. It automatically calculates the
appropriate sampling level and the required texture pixels
(texels) for interpolating each rendered pixel. With these
observations in sight, the rationale for using an LCM as the
generative model is twofold: (1) it enables fast and few-step
generation (within ten timesteps), and (2) at each step, it can
directly output a clean denoised latent sample, which can
be immediately decoded into pixel space, and allows us to
perform multi-view content fusion directly in the pixel space,
taking advantage of mipmapping.

Variance Preserving Noise Rendering Generative
Powers-of-10 [32] has shown that the image quality and
consistency improve when noise is shared between patches.
In the 3D painting case, we also want to render noise from
multiple views to maximize sharing noise texels between
views. Compared to nearest neighbor interpolation, the
bilinear interpolation of the textured surface facilitates better
texel sharing across views. However, the denoising diffusion

process requires the projected noise component of the data
to follow the normal distribution strictly. As shown in Fig. 2,
bilinear interpolation leads to subpar results due to violating
distribution properties.

We will now consider sampling from a random nor-
mal noise texture using bilinear interpolation. Specifically,
the standard convex combination Z ′ = rX + (1 − r)Y,
of two i.i.d. random variables X,Y ∼ N (0, 1), where
r ∈ [0, 1], is a random variable with non-unit variance:
Z ′ ∼ N (0, r2 + (1 − r)2) . The 2D case of bilinear in-
terpolation involves 4 variables and two coefficients ru, rv,
but inherently suffers from the same issue. We designed
a custom variance-preserving interpolation to alleviate this
issue and ensure unit variance of the interpolated noise vari-
able. In the 1D case, it takes the following form:

Z =
√
rX +

√
(1− r)Y. (1)

Here Z∼N (0, 1) for all interpolation coefficients r∈ [0, 1].
For 2D variance-preserving interpolation, we repeatedly ap-
ply the 1D case in Eq. (1) in u and v dimensions.

Multi-view Fusion Consistency Sampler We adapt the
multi-view sampling and painting procedure to the sampling
mechanism of LCMs [16, 28]. First, the color texture is
initialized to black, and the noise texture is initialized to
random normal noise. The object is rendered independently
textured with color and noise for each camera view in each it-
eration. Additionally, we store depth maps from the Z-buffer.
Color textures undergo mipmapping for better quality and

Figure 3. We show a comparison between Texfusion’s Sequential
Interlaced Multi-view Sampler (SIMS, left) [4] and our method
(right) in accommodating high-resolution textures. Texfusion’s
SIMS has rigid requirements on texture resolution and completely
loses view consistency with a high-resolution texture. Our formu-
lation of separating noise and color textures enables high texture
resolutions without sacrificing view consistency.



Method FID [10] ↓ KID (×10-3) [3] ↓
Text2Tex [5] 28.93 6.88 ±0.05

Consistency2 (Ours) 22.74 4.02 ±0.03

Table 1. Quantitative comparison of mesh painting methods.
Generative metrics for Text2Tex [5] and our method demonstrate
superior painting of Objaverse [8] meshes.

artifact-free view consistency, and the background is filled
from an environment cubemap. Noise texture rendering is
performed with our custom variance-preserving interpola-
tion, and the background is filled with random normal noise.
For each view i, we obtain the color latents xi by converting
the color-textured projections into the latent space with the
LCM encoder. We then compute a weighted average of the
color (xi) and noise (zi) latents based on the LCM noise
scheduling equation at timestep t: x̂i,t = α(t)xi + σ(t)zi.
Refer to [16] for the notation on α and σ. The combined la-
tent is then fed into the LCM, with the text prompts and depth
map for conditioning. The resulting clean latent is produced
in a single step and decoded back into RGB pixel space
for multi-view fusion. We perform the inverse rendering
with mipmaps to update the color texture map. Specifically,
we optimize it to fit the denoised RGB images, minimiz-
ing the L2 photometric loss. Due to the separation of noise
and color textures and the usage of appropriate interpola-
tion methods, we achieve flexibility in texture resolution, as
shown in Fig. 3.

4. Experiments
Implementation and Setup We use the nvdiffrast [13]
renderer to implement our variance-preserving interpolation.
Additionally, PyTorch3D [23] framework is used for mesh
and view processing. For the image generation model, we
use SDXL [20] model distilled to an LCM, with additional
depth conditioning from ControlNet [34]. A dome of 15
cameras covers the whole mesh located in the origin. For
each iteration, we adjust the azimuth of each camera pose
by 10◦ to promote coverage of the object from various view
angles. Additionally, we add relative pose descriptions in the
prompt for each view to facilitate view consistency. In our
Multi-view Fusion Consistency Sampler, we use 4 denoising
iterations, with text guidance scale 7.5 and depth guidance
scale 0.4 on all iterations. The color texture resolution is
4K, and the noise texture resolution is 768× 768.

Comparison to State-of-the-Art We compare our method
with Text2Tex [5], one of the best open-source state-of-the-
art mesh painting methods. Each method is evaluated using a
subset of the Objaverse evaluation meshes [8] from Text2Tex,
totaling 343 meshes in 203 categories. We include text de-
scriptions of meshes provided by Objaverse in the prompt.

Figure 4. Qualitative comparison of Objaverse [8] mesh paint-
ing. Text2Tex’s [5] sequential nature makes it susceptible to ir-
recoverable artifacts such as seams and coherence issues. Our
method is free of these limitations.

We sample views of the painted meshes from a set of
object-centric views with various elevation angles. We also
generate reference images using SDXL [20] pipeline with
50 denoising iterations guided by captions and depth maps
obtained from the same views. This set of view-inconsistent
images serves as a reference for the best generation quality
attainable with a pure diffusion model.

We calculated [19] Frechet Inception Distance (FID) [10]
and Kernel Inception Distance (KID) [3] between sets of
painted and reference images. Our method outperforms
Text2Tex in both metrics (Tab. 1). We also recorded ∼7.5×
runtime speed-up of our method (under 2 minutes per mesh)
compared to Text2Tex (around 15 minutes per mesh) [5].

In a qualitative comparison, our approach of denoising
views simultaneously with an LCM demonstrates better
visual quality than sequential denoising methods such as
Text2Tex. Specifically, our method is free of seams and the
Janus (multi-head) problem (Fig. 4).

5. Conclusion

We presented a novel recipe for lifting LCM into 3D for
fast generative painting. We introduced a creative mesh
texture formulation, which separates noise and color and
applies correct interpolation to both modalities, achieving
unconstrained camera view selection and texture resolution.
We conducted a study comparing our method with a
state-of-the-art mesh painting method, Text2Tex, and
showed advantages in generation quality and runtime. We
believe our work is a step towards interactive and fast 3D
painting that can benefit designers and content creators.
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