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Abstract

Existing methods for reconstructing objects and humans
from a monocular image suffer from severe mesh collisions
and performance limitations for interacting occluding ob-
jects. This paper introduces a method to obtain a glob-
ally consistent 3D reconstruction of interacting objects and
people from a single image. Our contributions include:
1) an optimization framework, featuring a collision loss,
tailored to handle human-object and human-human inter-
actions, ensuring spatially coherent scene reconstruction;
and 2) a novel technique to robustly estimate 6 degrees of
freedom (DOF) poses, specifically for heavily occluded ob-
jects, exploiting image inpainting. Notably, our proposed
method operates effectively on images from real-world sce-
narios, without necessitating scene or object-level 3D su-
pervision. Extensive qualitative and quantitative evaluation
against existing methods demonstrates a significant reduc-
tion in collisions in the final reconstructions of scenes with
multiple interacting humans and objects and a more coher-
ent scene reconstruction.

1. Introduction
Existing methods for human and object reconstructions are
either limited to single objects and humans or give limited
performance for complex images with multiple people and
objects [13, 22, 27, 35, 43, 73]. These methods estimate the
3D poses of humans and objects independently and do not
take into account the human-human interactions [88] and
even if they do they generally follow a supervised approach
[32]. This leads to large collisions between the meshes
with incoherent reconstructions. We consider the full scene
holistically and exploit information from the human-human
and human-object interactions for spatially coherent and
more complete 3D reconstruction of in-the-wild images.

PHOSA [88] pioneered the field and proposed the first
method that reconstructs humans interacting with objects
for in-the-wild images. However, PHOSA does not explic-
itly model human-human interactions and gives erroneous
reconstructions when objects are heavily occluded which
leads to reconstructions with incorrect depth ordering and
mesh collisions. Multi-human model-free reconstruction
from a single image was proposed in [57], however, this
method does not deal with interacting humans. Other meth-
ods [76, 77] for multi-human reconstructions generate re-
constructions with severe mesh collisions because they re-
construct each person independently. To address these chal-
lenges, in this paper, we have proposed an optimization-
based framework for the spatially coherent reconstruction
of scenes with multiple interacting people and heavily oc-
cluded objects. The method first reconstructs humans [34]
and objects [38] in the image independently. The initial
poses of people in the scene are then optimized to resolve
any ambiguities that arise from this independent composi-
tion using a collision loss, depth ordering loss, and inter-
action information. To deal with heavily occluded objects,
a novel 6 DOF pose estimation is proposed that uses in-
painting to refine the segmentation mask of the occluded
object for significantly improved pose estimation. Finally,
we propose a global objective function that scores 3D ob-
ject layouts, orientations, collision, and shape exemplars.
Gradient-based solvers are used to obtain globally opti-
mized poses for humans and objects. Our contributions are:

• A method for generating a cohesive scene reconstruction
from a single image by capturing interactions among hu-
mans and between humans and objects within the scene,
all without relying on any explicit 3D supervision.

• A collision loss in an optimization framework to robustly
estimate 6 DOF poses of multiple people and objects in
crowded images.
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Figure 1. Comparison of the proposed method (right) reconstruction with PHOSA(middle). The proposed method gives a more coherent
reconstruction with correct spatial arrangement by reasoning about human-human and human-object interaction

• An inpainting-based method to improve the segmentation
mask of heavily occluded objects that greatly boosts the
precision of 6 DOF object position estimations.

• Extensive evaluation of the proposed method on com-
plex images with multiple interacting humans and objects
from the COCO-2017 dataset [50] against the state-of-
the-art demonstrate the effectiveness of our approach.

2. Related Work

3D humans from a single image: Reconstructing 3D hu-
man models from images is often achieved through vari-
ous methodologies. One widely used approach involves
fitting parametric models like SMPL[53] to input images
[2, 3, 6, 15, 43, 62, 65]. Alternatively, learning-based tech-
niques directly predict model parameters such as pose and
shape[4, 25, 32, 35, 42, 59, 61]. [52, 62, 92] use statistical
body models and a large number of 3D scans to recover 3D
humans from a single image. [6] use 2D poses, [79] uses
2D body joint heatmaps and [44] uses GraphCNN to esti-
mate SMPL model [52]. However, these methods only es-
timate the 3D of a single person in the scene. Methods like
[32, 57, 86, 87] recover the 3D poses and shapes of multiple
people focus on resolving ambiguities that arise due to in-
correct depth ordering and collisions between people. How-
ever, these methods cannot handle large occlusions. Recent
advancements in whole-body mesh recovery from images
have shifted the focus from solely on regressing body pa-
rameters to also accurately estimating hand and face param-
eters. An example is FrankMocap [68], which employs a
modular design. This approach initially runs independent
3D pose regression methods for the face, hands, and body
and integrates their outputs through a dedicated module. A
one-stage pipeline named OSX [49] has been introduced for
3D whole-body mesh recovery, surpassing existing multi-
stage models in accuracy. It introduces a component-aware
transformer (CAT) comprising a global body encoder and a
local face/hand decoder. KBody[93] represents a methodol-
ogy for fitting a low-dimensional body model to an image,
employing a predict-and-optimize approach. A distinctive
feature of KBody is the introduction of virtual joints, en-
hancing correspondence quality and disentangling the opti-
mization process between pose and shape parameters.

3D objects from a single image: Single-view 3D re-
construction is a complex task, as it necessitates incor-
porating reliable geometric priors derived from our 3D
world. However, these priors often lack in diverse real-
world scenarios [30, 31, 63, 64]. Given their robustness
and accessibility, learning-based methods have emerged.
Deep learning approaches can be categorized based on the
employed 3D representations, encompassing voxel-based
frameworks [13, 55, 66, 67, 83], point cloud-based methods
[10, 18, 26], mesh-based techniques [23, 36, 47, 51], and
implicit function-based approaches [12, 71, 72]. The major-
ity of current single-view 3D mesh reconstruction methods
employ an encoder-decoder framework. Here, the encoder
discerns perceptual features from the input image, while the
decoder distorts a template to conform to the desired 3D
shape. The pioneering work by [81] introduced deep learn-
ing networks to this task. They employed the VGG net-
work [74] as the encoder and utilized a graph convolutional
network (GCN) as the decoder. [24] introduced a method
wherein a 3D shape is represented as a collection of para-
metric surface elements, allowing for a flexible representa-
tion of shapes with arbitrary topology. [60] addressed topol-
ogy changes by proposing a topology modification network
that adaptively deletes faces. These methods are trained and
evaluated on identical object categories.

Recent research has also devised techniques for 3D re-
construction from image collections without explicit 3D
supervision. This has been achieved by employing dif-
ferentiable rendering to supervise the learning process.
For instance, [36] proposed a method that reconstructs
the underlying shape by learning deformations on top of
a category-specific mean shape. [48] developed a dif-
ferentiable rendering formulation to learn signed distance
functions as implicit 3D shape representations, overcom-
ing topological restrictions. [16] learned both deforma-
tion and implicit 3D shape representations, facilitating re-
construction in category-specific canonical space. [80] ex-
tended category-specific models into cross-category models
through distillation. [45] used GNN trained on a synthetic
dataset without any humans to deduce an object’s layout.

3D human-to-object interaction: Modeling 3D human-
object interactions poses significant challenges. Recent
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Figure 2. Overview of the proposed method to generate spatially coherent reconstruction from a single image. The steps in red box are
novel. The reconstruction before human pose optimization exhibits notable mesh collisions. After human pose optimization, reduced mesh
collisions are seen while maintaining relative coherence between humans.

studies have demonstrated remarkable success in capturing
hand-object interactions from various perspectives, includ-
ing 3D [8, 78, 91], 2.5D [7, 9], and images [14, 17, 29, 37].
However, these achievements are limited to hand-object in-
teractions and do not extend to predicting the full body.
The complexity increases when considering full-body in-
teractions, with works like PROX [27] successfully recon-
structing [27, 82] or synthesizing [28, 89, 90] 3D humans
to adhere to 3D scene constraints. Other approaches focus
on capturing interactions from multiple views [5, 33, 75]
or reconstructing 3D scenes based on human-scene interac-
tions [85]. More recently, efforts have extended to model
human-human interactions [19] and self-contacts [20, 56].
[73] used information from the RGBD videos of individuals
interacting with interiors to train a model that understands
how people interact with their surroundings. Access to 3D
scenes gives scene constraints that enhance the perception
of 3D human poses [41, 69, 84]. [27] uses an optimization-
based method to enhance 3D human posture estimates con-
ditioned on a particular 3D scene obtained from RGBD sen-
sors. Another recent method, [70], creates a 3D scene graph
of people and objects for indoor data. [11] represents the
optimal configuration of the 3D scene, in the form of a parse
graph that encodes the object, human pose, and scene layout
from a single image. In our work, we overcome the limita-
tions of existing methods by handling not only on human-
object interactions but also capturing human-human inter-
actions and propose a method that deals with major occlu-
sions to significantly improved scene reconstruction.

3. Methodology

The proposed method takes a single RGB image as input
and gives a spatially coherent reconstruction of interacting
humans and objects in the scene, an overview is shown in

Figure 2. We exploit human-human and human-object in-
teractions to spatially arrange all objects in a common 3D
coordinate system. First, objects and humans are detected,
followed by SMPL-based per-person reconstruction (Sec.
3.1), which gives incorrect spatial reconstructions with col-
lisions between meshes. The human 3D locations/poses
are translated into world coordinates and refined through
a human-human spatial arrangement optimization using a
collision loss (Sec. 3.2). To correctly estimate the 3D ob-
ject pose (6-DoF translation and orientation) a differentiable
renderer is used that fits 3D mesh object models to the pre-
dicted 2D segmentation masks [40]. We correct the oc-
cluded object mask using image inpainting (in Sec. 3.3)
unlike PHOSA [88] which uses an occluded object mask.
Lastly, we perform joint optimization that takes into ac-
count both human-human and human-object interactions for
a globally consistent output. Our framework produces plau-
sible reconstructions that capture realistic human-human
and human-object interactions.

3.1. Estimating 3D Humans

Using [34], we estimate the 3D shape and pose parameters
of SMPL [52] given a bounding box for a human [54]. The
3D human is parameterized by pose θ ∈ R72, shape β ∈
R10, and a weak-perspective camera γ = [σ, tx, ty] ∈ R3.
To position the humans in the 3D space, γ is converted to
the perspective camera projection by assuming a fixed focal
length f for all images, and the distance of the person is de-
termined by the reciprocal of the camera scale parameter σ.
Thus, the 3D vertices of the SMPL model for the ith human
are represented as: Mi = J(θi, βi) + [tx, ty,

f
σi ], where J

is the differentiable SMPL mapping from pose and shape to
a human mesh and tih = [tx, ty,

f
σi ] is the translation of ith

human. The person’s height and size are regulated by the
SMPL shape parameter β. We define scale parameter(si)
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Figure 3. The proposed approach gives spatially coherent reconstructions with a significant reduction in mesh collisions compared to
PHOSA [88], ROMP[76], and BEV[77]. Significant collision are shown in highlighted circles.

for each human similar to PHOSA and the final vertices are
given by M̄i = siMi.

3.2. Human Pose Optimisation

Independently analyzing human 3D poses results in incon-
sistent 3D scene configurations. Human-human interactions
offer useful information to determine the relative spatial ar-
rangement and not considering this leads to ambiguities like
mesh penetration and incorrect depth ordering. We propose
an optimization framework that incorporates human-human
interactions. We first identify interacting humans in the im-
age and then optimize the pose through an objective func-
tion to correctly adjust their spatial arrangements.
Identifying interacting humans - Our hypothesis posits
that human interactions are contingent upon physical prox-
imity in world coordinates. Hence we find the interact-
ing humans by identifying the overlap of 3D bounding
boxes(More details regarding bounding box overlap crite-
ria can be found in the supplementary material).
Objective function to optimize 3D spatial arrangement
Our objective includes collision (LH−collision), interac-
tion (LH−interaction), and depth ordering loss (LH−depth)
terms to constraint the pose for interacting humans:

LHHI−Loss = λ1LH−collision + λ2LH−depth

+ λ3LH−interaction (1)

We optimize (1) using a gradient-based optimizer [39]
w.r.t. translation ti ∈ R3 and scale parameter si and the
Rotation Ri ∈ SO3 for the ith human instance . The human
translations are initialized from Sec 3.1. The terms in the
objective function are defined below:
Collision Loss (LH−collision) - To overcome the problem
of mesh collisions, as seen in existing methods in Fig. 3,
we introduce a collision loss LH−collision that penalizes
interpenetrations in the reconstructed people. Let ϕ be a
modified Signed Distance Field (SDF) for the scene that is
defined as follows: ϕ(x, y, z) = −min(SDF (x, y, z), 0)
where ϕ is positive for points inside the human and is pro-
portional to the distance from the surface, and is 0 outside of
the human. Typically ϕ is defined on a voxel grid of dimen-
sions Np∗Np∗Np. While it’s definitely possible to generate

a single voxelized representation for the entire scene, we of-
ten find ourselves requiring an extensive fine-grained voxel
grid. Depending on the scene’s extent, this can pose pro-
cessing challenges due to memory and computational lim-
itations. To overcome this a separate ϕi function is com-
puted for each person by calculating a tight box around the
person and voxelizing it instead of the whole scene to re-
duce computational complexity [32]. The collision penalty
of person j for colliding with person i is defined as follows:
Pij =

∑
v∈Mj

ϕ̃i(v), where ϕ̃i(v) samples the ϕi value for
each 3D vertex v in a differentiable way from the 3D grid
using trilinear interpolation. If there is a collision between
person i and a person j, Pij will be a positive value and de-
creases as the separation between them increases. If there
is no overlap between person i and j, Pij will be zero. Let
the translation of person i and person j be Ti and Tj respec-
tively. Then the collision loss between them is defined as:

Lij =

{
Pij

exp(||Ti−Tj+δ||2) Ti = Tj

Pij

exp(||Ti−Tj ||2) Ti ̸= Tj

(2)

When the translation values are the same (in case of max-
imum overlap) we use an extra term δ (0 < δ < 1) to ensure
non-zero gradients are not very large to avoid any instabili-
ties during optimization. The final collision loss for a scene
with N people is defined as follows:

LH−collision =

N∑
j=1

( N∑
i=1i̸=j

Lij

)
(3)

Interaction Loss (LH−interaction) - This is an instance-
level to pull the interacting people close together, similar
to [88]: LH−interaction =

∑
hi,hj∈H µ(hi, hj)||C(hi) −

C(hj)||2, where µ(hi, hj) identifies whether human hi and
hj are interacting according to the 3D bounding box over-
lap criteria. C(hi) and C(hj) give the centroid for human i
and human j respectively.
Depth-Ordering Loss (LH−depth) - This helps to achieve
more accurate depth ordering, as in [32]. The loss is defined
as: Ldepth =

∑
p∈S log(1 + exp(Dy(p)(p) − Dȳ(p)(p))),

where S = {p ∈ I : y(p) > 0, ȳ(p) > 0, y(p) ̸= ȳ(p)}
is the pixels in the image I with incorrect depth ordering
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Figure 4. Comparison of the segmentation masks and reconstruction with PHOSA. The segmentation mask of the bicycle is occluded
resulting in erroneous reconstruction in PHOSA. The proposed method uses image inpainting to remove the occlusion to generate a better
segmentation mask, which leads to a more complete reconstruction.

in the ground truth segmentation, the person index at pixel
position p is represented by y(p), and the predicted person
index in the rendered 3D meshes is ȳ(p) and y(p) ̸= ȳ(p).
Dy(p)(p) and Dȳ(p)(p) represent the pixel depths.

3.3. 3D Object Pose Estimation

After estimating the shape and pose of humans, the next step
is to estimate the same for the objects. To estimate the 3D
location t ∈ R3 and 3D orientation R ∈ SO(3) of the ob-
jects. For each object category, exemplar mesh models are
pre-selected. The mesh models are sourced from [1, 46].
The vertices of jth object are: V j

o = sj(RjO(cj , kj) + tj),
where cj is the object category from MaskRCNN [54], and
O(cj , kj) determines the kj − th exemplar mesh for cate-
gory cj . The optimization framework chooses the exemplar
that minimizes re-projection error to determine kj automat-
ically and sj is the scale parameter for jth object.

Our first objective is to estimate the 6 DOF pose of each
object independently. It is difficult to estimate 3D object
pose in the wild as there are: (1) no parametric 3D models
for objects; (2) no images of objects in the wild with 2D/3D
pose annotations; and (3) occlusions in cluttered scenes
with humans. We address these challenges by proposing an
optimization-based approach that uses a differentiable ren-
derer [38] to fit the 3D object to instance masks from [40]
in a manner that is robust to minor/major occlusions.

As defined in [88] we calculate a pixel-wise L2 loss over
rendered silhouettes S versus predicted masks M but the
quality of the predicted mask M is impacted by occlusions
as seen in [88], which results in a poorly estimated 6 DOF
pose. To address problems due to occlusions, we propose a
novel method that improves the masks as shown in Fig. 4.

Given an image I , a total number of objects N , and

bounding boxes for rigid Br and non-rigid Bnr objects,
along with their masks - Mr for rigid and Mnr for non-
rigid objects. Each ith object can be occluded by maxi-
mum N − 1 objects. To identify occluding objects we cal-
culate the Intersection over Union(IOU) between all pairs
of bounding boxes. Objects with IOU > 0.3 (Our se-
lection of this threshold stems from our empirical obser-
vations, wherein we found that objects with IOU > 0.3
led to noticeable improvements in reconstruction quality.
Conversely, when IOU was less than 0.3, the reconstruction
results obtained using our method closely resembled those
produced by PHOSA [88], more details in supplementary)
are occluding objects M for each object. Occluding objects
can be removed in numerous ways, for e.g remove only one
object at a time. The total possible combinations, in this
case, are

(
M
1

)
, or you remove a pair of objects at a time and

the total possible combinations, in this case, are
(
M
2

)
and

so on. The total number of all possible combinations can
be described as

(
M
0

)
+

(
M
1

)
+

(
M
2

)
+ .....

(
M
M

)
= 2M . To

remove j occluding objects where j ≤ M we need a sin-
gle mask Mocc−mask that is a combination of the j masks,
so Mocc−mask = M1 + M2 + .... + Mj . Now we use
the image-inpainting approach proposed by [58] to remove
the occluding objects. We pass the current image I and the
mask Mocc−mask to get a new image without occlusions
and use this image to get the new segmentation masks and
bounding boxes:

Inew = EC(I,Mocc−mask)

Bnew
r , Bnew

nr ,Mnew
r ,Mnew

nr = OD(Inew) (4)

where EC is the image inpainting algorithm and OD is
the object detection algorithm. Sometimes, the ith object
in I may not correspond to the same object in Inew. Let’s



say the index of the ith object in Inew be k. We iterate over
the list of new bounding boxes and calculate the IOU of
these boxes with Br[i] and, k corresponds to the index of
the bounding box for which IOU is closest to 1. We use
the mask Mnew

r [k] to determine object pose. Estimating a
reliable pose also depends heavily on the boundary details.
To incorporate this we augment the L2 mask loss with a
modified version of the symmetric chamfer loss [21]. Given
a no-occlusion indicator η (0 if pixel only corresponds to a
mask of a different instance, else 1), the loss is:

Locc−sil =
∑

(η◦S−Mnew
r [k])2+

∑
p∈E(η◦S)

min
p̄∈E(M)

||p−p̄2||

(5)
We generate masks Mocc−mask for different values of j

and a 3D pose corresponding to that mask is chosen that
results in a minimum value of Locc−sil. The edge map of
mask M is computed by E(M). To estimate the 3D object
pose, we minimize the occlusion-aware silhouette loss:

(Rj , tj)∗ = argmin
R,t

(Locc−sil(Πsil(V
j
o ),M

new
r [k])) (6)

where Πsil is the silhouette rendering of a 3D mesh
model via a perspective camera with a fixed focal length
f (Sec 3.1) and Mj is a 2D instance mask for the jth object.
Instance masks are computed by PointRend [40].

3.4. Joint Optimization

The joint optimization refines both the human and object
poses estimated above, exploiting both human-human and
human-object interactions through joint loss functions. Es-
timating 3D poses of people and objects in isolation from
one another leads to inconsistent 3D scene reconstruction.
Interactions between people and objects provide crucial
clues for correct 3D spatial arrangement, which is done by
identifying interacting objects and humans and proposing
an objective function for refining human/object poses.
Identifying human-object interaction. Our hypothesis
posits that human-object interactions are contingent upon
physical proximity in world coordinates. We use 3D bound-
ing box overlap between the human and object to determine
whether the object is interacting with a person.
Objective function to optimize 3D spatial arrangements.
We define a joint loss function that takes into account both
human-human and human-object interactions. It is crucial
to include both of them because if you simply optimize with
regard to human-object interactions, it may result in erro-
neous relative positions between interacting people even if
it would enhance the relative spatial arrangement between
the interacting humans and objects.

Ljoint−loss = LHOI−Loss + LHHI−Loss (7)

where LHHI−Loss is same as Eq. 1 and

LHOI−Loss = λ1LHO−collision + λ2LHO−depth

+ λ3LHO−interaction + λ4Locc−sil (8)

Depth-Ordering Loss (LHO−depth) is same as Section
3.2. We optimize (8) using a gradient-based optimizer [39]
w.r.t. translation ti ∈ R3 and intrinsic scale si ∈ R for the
ith human and, rotation Rj ∈ SO(3), translation tj ∈ R3

and sj ∈ R for the jth object instance jointly. The object
poses are initialized from Sec. 3.3. Locc−sil is the same
as (5) except without the chamfer loss which didn’t help
during joint optimization.
Interaction loss (LHO−interaction): This loss handles
both coarse and fine interaction between humans and
objects as in [88], defined as: LHO−interaction =
Lcoarse−inter + Lfine−inter.
The coarse interaction loss is: Lcoarse−inter =∑

h∈H,o∈O µ(h, o)||C(h) − C(o)||2, where µ(h, o)
identifies whether human h and object o are interacting
according to the 3D bounding box overlap criteria. C(h)
and C(o) give the centroid for human and the object respec-
tively. To handle human interactions, the fine interaction
loss is defined as:
Lfine−inter =

∑
h∈H,o∈O(

∑
Ph,Po∈P (h,o) µ(Ph, Po)||C(Ph)−

C(Po)||2), where Ph and Po are the regions of interac-
tion between the humans and the object, respectively.
µ(Ph, Po) is the overlap of the 3D bounding box between
the interacting objects, recomputed at each iteration.
Collision Loss (LHO−collision) - The formulation of this
loss is similar to the collision loss defined in Section 3.2.
The difference is that here we take into account the mesh
collision between interacting humans and objects in con-
trast to interacting humans. Let Nh represent the to-
tal number of humans and No total number of objects,
then the Loss function is defined as: LHO−collision =∑No

j=1

(∑Nh

i=1 Lhioj + Lojhi

)
, where hi represents the ith

human and oj represents the jth object.

4. Results and Evaluation
We perform both quantitative and qualitative assessments of
the performance of our technique on the COCO-2017 [50]
dataset on images that include interactions of humans and
objects against PHOSA [88], ROMP[76], and BEV[77].

4.1. Qualitative and Quantitative Analysis

Figures 5 and 6 show a qualitative comparison with
PHOSA, ROMP and BEV. PHOSA reconstructs both hu-
mans and objects; ROMP and BEV only reconstruct hu-
mans. As seen our approach yields improved reconstruction
quality by effectively mitigating ambiguities arising from
mesh collisions and occlusions.



Figure 5. Qualitative comparison on test images from COCO 2017
against PHOSA [88] with human-object interactions. Our method
gives better spatial reconstruction while substantially reducing col-
lisions(the golden circles delineate regions characterized by note-
worthy mesh collisions, while the red circles delineate areas show-
casing enhancements in reconstructions). More qualitative results
are shown in 4.3

Methods EH−col EH−depth EHO−col EHO−depth

PHOSA 79.42 86.68 78.21 68.84
ROMP 63.51 74.27 - -
BEV 35.25 56.17 - -
Ours 16.46 48.37 26.65 33.77

Table 1. Quantitative evaluation with PHOSA [88], ROMP[76],
and BEV[77]. BEV and ROMP only reconstruct humans. Equa-
tions of each evaluation parameter are given in the supplementary.

For quantitative evaluation, we employ a forced-choice
assessment approach similar to PHOSA[88] on COCO-
2017 [50] images since there are no 3D ground truth an-
notations for people and objects in images in the wild.
From the COCO-2017 test set, we randomly selected a sam-
ple of images and performed reconstruction on each im-
age. We compare our method with PHOSA, ROMP, and
BEV by reconstructing the scenes and comparing the degree
of mesh collisions for human-human EH−col and human-
object EHO−col and incorrect depth ordering for human-
human EH−depth and human-object EHO−depth interac-
tions that results from each method. This is averaged across
all images to estimate values in Table 1. Our approach
outperforms the state-of-the-art techniques for both multi-
human and multi-human-object reconstruction, as well as
results in a more coherent and realistic reconstruction with
significantly fewer ambiguities.

Figure 6. Qualitative results of proposed method on test images
from COCO 2017 compared to PHOSA, ROMP, and BEV for
human-human interactions. Our method gives more realistic and
coherent reconstructions for images with multiple humans.

Ours vs. PHOSA ROMP BEV

88% 80% 74%

Table 2. User study that gives the average percentage of images for
which our method performs better on COCO-2017. 50% implies
equal performance.

Ours vs. No Lcollision No Ldepth No Linteraction No Locc−sil

83% 62% 73% 77%

Table 3. In the ablation study we drop loss terms from our pro-
posed method. The higher the percentage, the more the effect
of the loss term. No Lcollision implies the exclusion of both
LH−collision and LHO−collision. No Ldepth involves omitting
LH−depth and LHO−depth. No Linteraction means we omitted
the LH−interaction and LHO−interaction, and lastly No Locc−sil

corresponds to dropping the loss term defined in eq. 5

We also perform a subjective study similar to [88], where
we show the reconstructions for each image from PHOSA,
ROMP, BEV, and our proposed method in a random order to
the users and the users mark whether our result looks better
than, equal to, or worse than the other methods. We com-
pute the average percentage of images for which our method
performs better in Table 2. Overall, the performance of our
method is relatively better than the other methods.



Figure 7. Our method, recovers plausible human-object and
human-human spatial arrangements by explicitly reasoning about
them. Here we demonstrate reconstruction on images with both
humans and objects and compare PHOSA’s reconstructions to
those produced by our method.

4.2. Ablation Study

An ablative study was conducted to assess the significance
of the loss terms in Table 3. The identical forced-choice
test similar to PHOSA[88] is conducted for the complete
proposed methodology (Equation 7), by omitting loss terms
from the proposed method and measuring the performance.
Our findings indicate that the exclusion of the collision and
occlusion-aware silhouette loss has the most notable effect,
with the interaction loss following closely behind. The col-
lision loss prevents mesh intersection and the silhouette loss
guarantees that the object poses remain consistent with their
respective masks.

4.3. Additional Results

More results are shown Fig. 7 and 8 on challenging Youtube
and Google images.

5. Discussion
Current approaches for reconstructing humans/ objects
from a single image often produce reconstructions that con-
tain various ambiguities, especially in situations involving
multiple interactions between humans and between humans
and objects. In this paper, we perform holistic 3D scene
perception by exploiting the information from both human-
human and human-object interactions in an optimization
framework. The optimization makes use of several con-

Figure 8. we illustrate the differences in human reconstructions
generated by PHOSA, ROMP, BEV, and Our approach when pro-
vided with an input image. Our approach produces more plausible
reconstructions with a substantial decrease in mesh collisions, all
while maintaining relative coherence.

straints to provide a full scene that is globally consistent,
and reduces collisions, and improves spatial arrangement
(Table 1) over other methods. The proposed human op-
timization framework resolves ambiguities between recon-
structed people, and the proposed human-object optimiza-
tion framework addresses ambiguities between humans and
objects. We further introduce a method that significantly
improves the pose estimation of heavily occluded objects.
We demonstrate via our qualitative and quantitative evalua-
tions that the proposed method outperforms other methods
and produces reconstructions with noticeably less ambigu-
ity.

6. Limitations and Future Work
When compared to learning-based techniques, our method
demands increased processing time for reconstruction gen-
eration and may occasionally yield a slightly inaccurate spa-
tial configuration to mitigate collisions. In terms of fu-
ture directions, our current implementation only considers
coarse interactions among humans. However, in subsequent
iterations, we aim to incorporate fine-grained interactions,
leveraging this information to refine our estimation of hu-
man pose.

References
[1] Free3d. https://free3d.com/. 5
[2] Thiemo Alldieck, Marcus Magnor, Weipeng Xu, Christian

Theobalt, and Gerard Pons-Moll. Detailed human avatars

https://free3d.com/


from monocular video. In 2018 International Conference on
3D Vision (3DV), pages 98–109. IEEE, 2018. 2

[3] Thiemo Alldieck, Marcus Magnor, Weipeng Xu, Christian
Theobalt, and Gerard Pons-Moll. Video based reconstruction
of 3d people models. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 8387–
8397, 2018. 2

[4] Thiemo Alldieck, Marcus Magnor, Bharat Lal Bhatnagar,
Christian Theobalt, and Gerard Pons-Moll. Learning to re-
construct people in clothing from a single rgb camera. In
Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, pages 1175–1186, 2019. 2

[5] Bharat Lal Bhatnagar, Xianghui Xie, Ilya A Petrov, Cristian
Sminchisescu, Christian Theobalt, and Gerard Pons-Moll.
Behave: Dataset and method for tracking human object in-
teractions. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 15935–
15946, 2022. 3

[6] Federica Bogo, Angjoo Kanazawa, Christoph Lassner, Peter
Gehler, Javier Romero, and Michael J Black. Keep it smpl:
Automatic estimation of 3d human pose and shape from a
single image. In Computer Vision–ECCV 2016: 14th Euro-
pean Conference, Amsterdam, The Netherlands, October 11-
14, 2016, Proceedings, Part V 14, pages 561–578. Springer,
2016. 2

[7] Samarth Brahmbhatt, Cusuh Ham, Charles C Kemp, and
James Hays. Contactdb: Analyzing and predicting grasp
contact via thermal imaging. In Proceedings of the
IEEE/CVF conference on computer vision and pattern
recognition, pages 8709–8719, 2019. 3

[8] Samarth Brahmbhatt, Ankur Handa, James Hays, and Dieter
Fox. Contactgrasp: Functional multi-finger grasp synthesis
from contact. In 2019 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), pages 2386–2393.
IEEE, 2019. 3

[9] Samarth Brahmbhatt, Chengcheng Tang, Christopher D
Twigg, Charles C Kemp, and James Hays. Contactpose:
A dataset of grasps with object contact and hand pose. In
Computer Vision–ECCV 2020: 16th European Conference,
Glasgow, UK, August 23–28, 2020, Proceedings, Part XIII
16, pages 361–378. Springer, 2020. 3

[10] Chao Chen, Zhizhong Han, Yu-Shen Liu, and Matthias
Zwicker. Unsupervised learning of fine structure generation
for 3d point clouds by 2d projections matching. In Proceed-
ings of the ieee/cvf international conference on computer vi-
sion, pages 12466–12477, 2021. 2

[11] Yixin Chen, Siyuan Huang, Tao Yuan, Siyuan Qi, Yixin
Zhu, and Song-Chun Zhu. Holistic++ scene understanding:
Single-view 3d holistic scene parsing and human pose es-
timation with human-object interaction and physical com-
monsense. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 8648–8657, 2019. 3

[12] Zhiqin Chen and Hao Zhang. Learning implicit fields for
generative shape modeling. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition,
pages 5939–5948, 2019. 2

[13] Christopher B Choy, Danfei Xu, JunYoung Gwak, Kevin
Chen, and Silvio Savarese. 3d-r2n2: A unified approach

for single and multi-view 3d object reconstruction. In Com-
puter Vision–ECCV 2016: 14th European Conference, Am-
sterdam, The Netherlands, October 11-14, 2016, Proceed-
ings, Part VIII 14, pages 628–644. Springer, 2016. 1, 2

[14] Enric Corona, Albert Pumarola, Guillem Alenya, Francesc
Moreno-Noguer, and Grégory Rogez. Ganhand: Predicting
human grasp affordances in multi-object scenes. In Proceed-
ings of the IEEE/CVF conference on computer vision and
pattern recognition, pages 5031–5041, 2020. 3

[15] Enric Corona, Gerard Pons-Moll, Guillem Alenya, and
Francesc Moreno-Noguer. Learned vertex descent: A new
direction for 3d human model fitting. In European Confer-
ence on Computer Vision, pages 146–165. Springer, 2022.
2

[16] Shivam Duggal and Deepak Pathak. Topologically-aware de-
formation fields for single-view 3d reconstruction. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 1536–1546, 2022. 2

[17] Kiana Ehsani, Shubham Tulsiani, Saurabh Gupta, Ali
Farhadi, and Abhinav Gupta. Use the force, luke! learning
to predict physical forces by simulating effects. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 224–233, 2020. 3

[18] Haoqiang Fan, Hao Su, and Leonidas J Guibas. A point set
generation network for 3d object reconstruction from a single
image. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 605–613, 2017. 2

[19] Mihai Fieraru, Mihai Zanfir, Elisabeta Oneata, Alin-Ionut
Popa, Vlad Olaru, and Cristian Sminchisescu. Three-
dimensional reconstruction of human interactions. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 7214–7223, 2020. 3

[20] Mihai Fieraru, Mihai Zanfir, Elisabeta Oneata, Alin-Ionut
Popa, Vlad Olaru, and Cristian Sminchisescu. Learning
complex 3d human self-contact. In Proceedings of the
AAAI Conference on Artificial Intelligence, pages 1343–
1351, 2021. 3

[21] Dariu M Gavrila. Pedestrian detection from a moving vehi-
cle. In Computer Vision—ECCV 2000: 6th European Con-
ference on Computer Vision Dublin, Ireland, June 26–July 1,
2000 Proceedings, Part II 6, pages 37–49. Springer Berlin
Heidelberg, 2000. 6

[22] Rohit Girdhar, David F Fouhey, Mikel Rodriguez, and Ab-
hinav Gupta. Learning a predictable and generative vec-
tor representation for objects. In Computer Vision–ECCV
2016: 14th European Conference, Amsterdam, The Nether-
lands, October 11-14, 2016, Proceedings, Part VI 14, pages
484–499. Springer, 2016. 1

[23] Georgia Gkioxari, Jitendra Malik, and Justin Johnson. Mesh
r-cnn. In Proceedings of the IEEE/CVF international confer-
ence on computer vision, pages 9785–9795, 2019. 2

[24] Thibault Groueix, Matthew Fisher, Vladimir G Kim,
Bryan C Russell, and Mathieu Aubry. A papier-mâché ap-
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