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Abstract

Artificial Intelligence (AI) has revolutionized various
sectors, including Cultural Heritage (CH) and Creative In-
dustries (CI), defining novel opportunities and challenges
in preserving tangible and intangible human productions.
In such a context, Neural Rendering (NR) paradigms play
the pivotal role of 3D reconstructing objects or scenes by
optimizing images depicting them. However, there is a lack
of work examining the ethical concerns associated with its
usage. Those are particularly relevant in scenarios where
NR is applied to items protected by intellectual property
rights, UNESCO-recognised heritage sites, or items criti-
cal for data-driven decisions. For this, we here outline the
main ethical findings in this area and place them in a novel
framework to guide stakeholders and developers through
principles and risks associated with the use of NR in CH
and CI. Such a framework examines AI’s ethical principles
supporting the definition of novel ethical guidelines.

1. Introduction

Artificial Intelligence (AI) sparked advancements across
various sectors, both in industry and academia. One of
the most impacted sectors corresponds to Cultural Her-
itage (CH) and Creative Industries (CI), often considered
as a unique discipline (CCI) [24, 25, 45, 70]. Through AI
paradigms, tangible and intangible CCI could be better an-
alyzed, preserved, and promoted, with a positive social im-
pact [45, 70]. In particular, it has facilitated digitization
efforts supported by international institutions such as the
EU Commission and UNESCO, democratizing accessibil-
ity, preservation, and dissemination of culture [24, 90, 91].
Monuments, sites, and intangible traditions such as crafts,
and art, are just a few examples of CCI elements that are
being preserved through AI.

The advent of Neural Rendering (NR) techniques has
dramatically improved this digitization and preservation

process considering their ability to reconstruct three-
dimensional (3D) objects and scenes, being only optimized
on the 2D image that depicts them. In the NR arena, Neu-
ral Radiance Fields (NeRFs) and Three-Dimensional Gaus-
sian Splatting (3DGS), are the most adopted paradigms,
which can be efficiently applied in different environments
with variable illumination settings, with pictures taken
in the wild and be optimized with small number of im-
ages [1, 31, 60]. This feature allows their adoption to digi-
tize scenes and objects not only in a perfect laboratory envi-
ronment but also in non-optimal ones (also for those objects
that no longer exist, like lost heritage) [27, 38]. However,
the application of NR in CCI raised new challenges from an
ethical perspective. As a preliminary example, one could
argue about the authenticity and (intellectual) property of
the digital replica [24, 63]. Issues like this become even
more relevant considering elements protected by UNESCO
or critics for data-driven decisions [90, 91]. Nevertheless,
there is a lack of work that has analyzed the ethical implica-
tions surrounding the application of NR to CCI items. This
also indicates the lack of a robust framework from which
new guidelines and regulations can be derived.

This paper fills this gap by reviewing the primary eth-
ical evidence in this area. It aims to clarify the ethical
principles and risks associated with the use of NR in CCI
contexts. Our framework attempts to navigate the com-
plex ethical terrain of NR integration, taking into account
the well-established principles of trustworthy AI contained
in the AI Act, including responsibility, reliability, fairness,
sustainability, and transparency [58]. The framework has
been designed with consideration of some of the world’s
most recognized ethical guidelines, such as the European
Commission’s White Paper on AI [24], the Assessment
List for Trustworthy AI (ALTAI) [23], The ICOM Code of
Ethics [68], UNESCO’s documents on the Recommenda-
tion on the Ethics of Artificial Intelligence [90] and report
on Cultural and Creative Industries [91]. Such a framework
aims to support and enhance the development of NR tech-
nologies in CCIs while preserving their intrinsic values and



importance. The main contributions of this paper are (i)
identify the ethical pitfalls of NR paradigms for CCI; (ii) de-
sign and implement a specific ethical framework inspired by
globally relevant guidelines; (iii) provide multidisciplinary
guidelines for the development of NR solutions, taking into
account the risk specificities of NR.

2. Related works
In this section, we provide a thorough review of the current
status of the state of the art of NR as applied to CH and
CI, while delineating ethical considerations. This section is
therefore divided into two distinct but related parts: “Tech-
nical State of the Art” and “Ethical State of the Art”.

2.1. Technical State of the Art

Traditionally, extracting three-dimensional (3D) models
from 2D images has been primarily implemented through
conventional geometric methods. These methods rely on
established techniques such as photometric consistency and
gradient-based features to extract depth cues from visual
data [10, 13, 30, 34, 40, 43, 76, 79, 84]. However, recent
advances in neural networks laid the path to the develop-
ment of Neural Rendering (NR) techniques. These tech-
niques are characterized by deep image or video generation
methods that provide explicit or implicit control over vari-
ous scene properties, including camera parameters and ge-
ometry. Such models learn complex mappings from exist-
ing images to generate new ones [86]. In such a space, two
paradigms are emerging: Neural Radiance Fields (NeRFs)
and Three-Dimensional Gaussian Splatting (3DGS). These
have attracted considerable attention due to their power and
speed of reconstruction [47, 62, 64, 86]. NeRFs are im-
plicit neural radiance field representations via multi-layer
perceptrons (MLPs), optimized via rendering reconstruc-
tion loss over 2D images to learn the complex geometry
and lighting of the 3D scene they capture [31, 64]. While
primarily recognized for novel view synthesis, NeRFs al-
low the extraction of 3D surfaces, meshes, and textures
[85]. This is achieved through an internal representation as
an Occupancy Field (OCF) or a Signed Distance Function
(SDF), which can be easily converted into a 3D mesh using
conventional algorithms such as the Marching Cubes [56].
Similarly, 3DGS aims to efficiently learn and render high-
quality 3D scenes from 2D images [47]. 3DGS introduces
a continuous and adaptive framework using differentiable
3D Gaussian primitives, in contrast to traditional volumet-
ric representations such as voxel grids. These primitives pa-
rameterize the irradiance field, allowing novel views to be
generated during rendering. 3DGS achieves real-time ren-
dering through a tile-based rasterizer, unlike NeRF which
relies on computationally intensive volumetric ray sam-
pling [47, 88]. Both NeRFs and 3DGS are self-supervised
and can be trained using only multi-view images and their

corresponding poses, eliminating the need for 3D/depth su-
pervision (using algorithms such as Structure from Motion
to extract camera poses). In addition, they generally de-
liver higher photorealistic quality compared to traditional
novel view synthesis methods [31]. These factors make
them suitable for various applications in different domains,
especially in the context of CCI, where the generation of
the most faithful representation is key. NeRF has recently
been considered for CH applications for different contexts
and data, such as those collected with smartphones or pro-
fessional cameras, in different environments [8, 18, 60]. At
the same time, they have been used in the context of CI,
mainly for industrial design, and various fashion applica-
tions, such as 3D object reconstruction and human gen-
eration [26, 29, 74, 93, 100]. Notwithstanding its new-
ness, 3DGS has also been considered and applied in CH,
where it was compared with NeRF for the reconstruction
of real monuments, and also in CI, where it was used to
efficiently generate dressed humans [1, 11]. Although not
specifically applied to the CCI context, few-shot approaches
amount to a variation of NR that can be optimized for the
3D representation of scenes and objects by using only a
few frames (typically 1 to 10) [48, 55, 101]. Such ap-
proaches can be adopted for those CCI objects that can no
longer be captured and are stored in a small number of im-
ages, but also for those objects that can only be captured
from a limited set of views. In such a context, relevant
works amount to PixelNeRF, which introduces an approach
that preserves the spatial alignment between images and
3D representations by learning a prior over different input
views [102]. In contrast, models such as DietNeRF, Reg-
NeRF, InfoNeRF, and FreeNerf address few-shot optimiza-
tion without relying on knowledge, instead employing op-
timization and regularisation strategies along with auxiliary
semantic losses [42, 48, 101].

2.2. Ethical State of the Art

As mentioned in the introduction, while the ethical impli-
cations of AI in CCI have been explored, the ethical impli-
cations of using NR paradigms have been poorly explored.
For this, works such as [33, 45, 70, 71, 73, 81] draw on
important and relevant sources of knowledge regarding the
ethics of AI, and in some cases, the ethics of generative AI.
In particular, [45] outlined the implications of AI across
sectors on a global scale, sparking debates about the ethical
principles that should guide its development and use. Con-
cerns include potential job displacement, misuse by mali-
cious actors, accountability issues, and algorithmic bias. It
also highlights efforts to engage different stakeholders, in-
cluding public and private companies, questions about their
motivations, and the convergence of ethical principles. Fi-
nally, it discusses the main ethical principles currently ana-
lyzed in AI ethics, while delineating guidelines to develop



fair and trustworthy systems. Specifically, CH [70, 71] an-
alyzed ethical concerns regarding the use of AI’s role in ac-
tivities such as creating digital replicas or providing unbi-
ased explanations of artworks. They also developed an ethi-
cal framework for these activities, including relevant ethical
principles such as shared responsibility, meaningful partic-
ipation, and accountability. Their findings underscore the
need to develop sector-specific ethical guidelines for AI in
both tangible and intangible CH to ensure its sustainable
development while preserving its values, meaning, and so-
cial impact. In the context of CI, Flick et al. [28] pointed
out the urgency of defining ethical rules and exploring is-
sues of ownership and authorship, biases in datasets, and
the potential dangers of non-consensual deepfakes. In the
same context, in [81], the authors analyzed the lack of eth-
ical discussion around generative AI, particularly around
biases, while exploring their implications from a socio-
cultural art perspective. Their findings analyzed how gen-
erative AI models showed biases towards artists’ styles that
were also present in the training data. We should also reflect
on public primary sources of global AI ethical significance,
to establish a robust AI ethical framework about NR. To
this end, we rely first on the Assessment List for Trustwor-
thy Artificial Intelligence (ALTAI) developed by the Euro-
pean Commission’s High-Level Group on Artificial Intel-
ligence (implemented by HLEGAI in 2019) [23]. ALTAI
identifies seven requirements necessary to achieve trustwor-
thy AI, covering aspects such as human oversight, techni-
cal robustness, privacy, transparency, fairness, societal well-
being, and accountability. It is important to note that these
ethical imperatives are regulative, not legally binding, and
serve as guiding principles for the responsible development
of the technology. Second, UNESCO’s Recommendation
on the Ethics of Artificial Intelligence and the Readiness as-
sessment methodology provides systematic regulatory and
evaluation guidance with a globally sensitive perspective
to guide companies in responsibly managing the impact
of AI on individuals and society [89, 90]. These recom-
mendations emphasize bridging digital and knowledge gaps
among nations throughout the AI lifecycle and precisely de-
fine the values guiding the responsible development and uti-
lization of AI systems. In line with the EU guidelines, UN-
ESCO emphasizes ’transparency and accountability’ as key
principles for trustworthy AI. Transparency guarantees that
the public is informed when AI systems influence policy
decisions, promoting comprehension of their significance.
This transparency is essential to ensure equity and inclu-
sivity in the outcomes of AI-based systems. Explainability
refers to understanding how different algorithmic pipelines
work, from the received input data to their processed out-
puts. . We also considered the European Commission’s
White Paper on AI [24], which highlights the importance
of a European approach to the development of AI, based on

ethical values and aimed at promoting benefits while ad-
dressing risks. In particular, it outlines the need for the
trustworthiness of AI systems based on European values
and fundamental rights such as human dignity and privacy.
It provides a regulatory and investment-oriented approach
to address the ethical risks of AI, focusing on building an
ecosystem of excellence and trust throughout its lifecycle.
We then considered specifically the CCI context of our re-
search, starting with the ICOM Code of Ethics and Muse-
ums [68], which defines ethical standards on issues specific
to museums and provides standards of professional prac-
tice that can serve as a normative basis for museum in-
stitutions. Such a code begins with a position statement
that explains the purpose of museums and their responsi-
bilities. It then focuses on the specific challenges faced
by museums, including (i) the responsibility to safeguard
both tangible and intangible natural and cultural heritage,
while protecting and promoting this heritage within the hu-
man, physical, and financial resources allocated; (ii) the ac-
quisition, conservation, and promotion of collections as a
contribution to the preservation of heritage; (iii) the provi-
sion of access to, interpretation of and promotion of her-
itage; (iv) the definition of policies to preserve the commu-
nity’s heritage. (iv) to define policies for the conservation
of community heritage and identity. Again in the context
of the CCI, we considered the well-known artists’ associa-
tions’ specification of the EU AI law dedicated to the cre-
ative arts, including safeguards that require rights holders
to be specifically [73, 92]. Such a document, issued by 43
unions representing creative authors, performers, and copy-
right holders, emphasizes the urgent need for effective reg-
ulatory measures to deal with generative AI. In particular,
the document highlights how existing measures are insuffi-
cient to protect the digital ecosystem and society at large.
It sets out requirements for providers of foundational mod-
els, including transparency about training materials, their
accuracy and diversity, and compliance with legal frame-
works for data collection and use. These proposals aim to
ensure the responsible development and deployment of gen-
erative AI systems while protecting against potential harms
such as misinformation, discrimination, and infringements
of privacy and copyright. Finally, we have included in our
analysis the UNESCO document on Cultural and Creative
Industries in the COVID-19 era [91]. This document was
one of the first to analyze the impact of the pandemic by
exploring the use of digital technologies by audiences and
cultural professionals in the CCIs, which are now becoming
pervasive, particularly in the visual industries, and which
can be analyzed through an ethical lens.

3. Methodology
In this section, we present a detailed approach for the anal-
ysis of ethical pitfalls within NR techniques in CCI. On top



Figure 1. Ethical Workflow for NR in CCI applications. The approach starts from the selection of the NR methodology and data where
they are applied. Then the ethical framework defines principles that must be evaluated to avoid risks, providing a conclusive analysis and
quantification of ethical compliance scores.

of this analysis, we defined an ethical framework for assess-
ing the trustworthiness of such techniques, given the lack of
work on this topic. Our study begins with an analysis of the
scientific literature on neural rendering approaches, focus-
ing on NeRFs and 3DGS. From this research, we derived the
technical challenges of their application in CCI. Then, con-
sidering these challenges, we examined ethical documents
issued by public and globally relevant issuers and scientific
literature. Through these, we highlight the key ethical risks
that these technical challenges may pose, along with their
associated and well-established principles. Following these
documents and reported guidelines, we have selected those
principles and risks that can be linked to specific NR chal-
lenges that could help mitigate them. The result of this
process, visually illustrated in Figure 1, is a novel ethical
framework that aims to build NR systems with a trustwor-
thy approach.

3.1. Challenges and Opportunities of Neural Ren-
dering in CCI

Considering NR, in particular, possible challenges, and
technical risks may arise for the specific elements in the
CCI domain. These challenges include but are not lim-
ited to (i) Understanding complex AI models and validat-
ing the data collection process; (ii) Ensuring the accuracy
of reconstructions; (iii) Demonstrating stability and gener-
alization in different (social) environments; (iv) Unbiased
and fair results; (v) Ethical data ownership; (vi) Minimiz-
ing environmental impact. Considering (i) significant chal-
lenges arise as the lack of interpretability of those NR mod-
els that expose knowledge prior or are being conditioned on
models with prior knowledge [39, 102]. Moreover, missing
descriptions of the data acquisition steps hinder account-
ability and a data-driven decision-making approach [78].
These challenges underline the importance of developing
methods and tools to improve transparency, interpretability,

and accountability in NR systems [9, 14, 39, 96]. Other
technical challenges and risks related to confidence in the
accuracy/fidelity of the reconstructions and the consistency
of the outputs generated (ii). Inconsistent outputs could
be generated due to few-shot learning approaches, in-the-
wild datasets, or data corruption, requiring rigorous testing
and validation procedures [59, 87, 102]. Validation of the
consistency and fidelity of NR input and synthesized data
in different domains is a crucial challenge to define gen-
eralized and reliable systems. Stability and generalization
across different (social) environments (iii) could also be de-
fined as an issue, considering that NR methods may lack
visual generalization and inconsistent geometric represen-
tations, which are significant barriers to achieving robust
performance in diverse CCI contexts [17, 18, 60]. This phe-
nomenon could happen while optimizing an NR in a few-
shot or an incomplete set of scene views. A possible so-
lution to cope with such phenomena amounts to adopting
few-shot architectures or pre-trained models [48, 101, 102].
In this particular case, however, (iv) we should consider the
kind of architectural approach followed by those few-shot
networks (e.g., overlook high-frequency details [101]) and
the bias that those pre-trained models expose in their knowl-
edge priors [15, 48, 102]. Such models, along with biases
that could emerge within the data collection process, high-
light the importance of developing methods that mitigate
bias and promote equitable results [105]. It is also worth
mentioning the criticalities (v) that emerge while discussing
already considered challenges like misuse of input and gen-
erated data and unfaithful generation in the context of data
ownership and responsibility [5, 16]. The ownership of the
NR 3D-generated items entails the rightful possession of
data and the responsibility to ensure usage and protection
against misuse [70]. Data misuse poses a great risk, rang-
ing from unauthorized reproduction to malicious manipu-
lation, that could be applied in NR to generate unfaithful



items [39], damaging stakeholders that have economical or
emotive interest in them [70]. For example, if some views or
geometric structures of the 3D models reconstructed by NR
methods are inconsistent with reality, one could argue about
their authenticity and also debate their intellectual property
[57]. All of these aspects define the urgency of integrating
social considerations into the system functionality, requir-
ing careful human validation protocols [83]. Finally, (vi)
NR lays significant risks for the environment [51, 75]. Sus-
tainability is a critical aspect associated with the high com-
putational demand of NR processes, and the energy used to
maintain ready-to-visualize renderers [94]. Moreover, the
indirect energy costs stemming from activities such as pro-
fessional digital photography waste, creating photo capture
settings, data transmission, and storage further contribute to
the environmental footprint of NR paradigms.

3.2. Ethical Principles of Neural Rendering in CCI

Our study begins with a review of guidelines from key
regulatory frameworks, including the Assessment List for
Trustworthy Artificial Intelligence (ALTAI) [23], the UN-
ESCO Recommendation on the Ethics of Artificial Intelli-
gence [90], and the European Commission’s White Paper
on AI [24]. We also thoroughly analyzed [45, 73, 81],
which provides a global mapping of AI regulations and ro-
bust ethical principles. Then, given the CCI context of our
investigation, we considered the ICOM Code of Ethics and
Museums [68] and a specification of the AI act for the cre-
ative arts [73, 92]. We have also included in our analysis the
UNESCO on Cultural and Creative Industries in the face of
COVID-19 [91]. Following these documents and reported
guidelines, we selected specific ethical principles to develop
a framework to be applied concerning the usage of NR in
CCI. In the following, we highlight the ethical principles
considered and how they connect to the technical challenges
listed in the previous Section 3.1.

Responsibility One of the most relevant ethical principles
that should be recognized for a trustworthy application of
NR in CCI is responsibility. Responsibility refers to the
moral obligation of individuals, organizations, and societies
to ensure that AI technologies are developed, deployed, and
used in ways that respect and preserve cultural heritage and
promote the well-being of individuals and communities in-
volved in creative endeavors [45]. It is worth highlighting
that concerning NR, actions taken from data capturing to
model training, evaluation, and deployment, rely on the dif-
ferent stakeholders (e.g., data generator, data owners, ML
engineers). For this reason, the accountability of the action
taken through NR is addressed to both engineers as well as
cultural managers or creative professionals [32, 68]. For
this, a multidisciplinary approach is required to ensure NR
accountability, defining policies to co-create and evaluate

processes and results. Such principle should also be applied
to input data to NR models and those that are instead gener-
ated, providing adherence to ethical guidelines throughout
the entire data lifecycle [70]. This includes transparent doc-
umentation of data sources, data usage consent, and robust
security measures to safeguard against misuse [70]. Fur-
thermore, ensuring the authenticity of generated content is
essential to uphold trust and credibility in NR systems, par-
ticularly in applications where the generated output may in-
fluence decision-making or perception, such as replication
of UNESCO-protected material or Digital Twins real-time
monitoring [16, 21, 44, 53, 57, 82, 89]. With data ownership
and compliance against ethical principles, stakeholders can
mitigate the risks associated with data misuse and unfaithful
generation. Responsibility towards real and generated data
ownership and legal liability for unfaithful ones is essential
to maintain the integrity of NR applications [45, 70].

Transparency and Explainability Transparency and Ex-
plainability are core principles in the development of NR
systems, in particular, to define accountability and trustwor-
thiness in CCI. Transparency involves the clear and open
communication of processes, algorithms, data, and out-
comes associated NR [45], enabling stakeholders to under-
stand how decisions are made and assess potential biases or
limitations [28, 70]. Explainability regards instead the abil-
ity of NR systems to provide understandable explanations
for their synthesis and 3D model extraction [97]. For ex-
ample, NR produces an incorrect visual representation of a
real-world facility, and the influenced stakeholders must be
able to understand the reason [12]. Considering the com-
plexity of NR approaches for novel view synthesis and 3D
object rendering and their implicit black-box structure, the
adoption of explainability techniques for their analysis is re-
quired. For example, different mechanisms like visualizing
the learned geometrical structure, saliency maps, interpret-
ing network activations, or analyzing the influence of input
parameters on the rendered images are all techniques that
could be adopted to support NR [52, 67, 77]. In particu-
lar, such approaches could support the improvement of such
systems, from both an architectural or data-centric perspec-
tive, detecting biases, but also comparing different models
according to their learned features [52, 67, 77]. Such as-
pects are all crucial in the context of CCI, where an enor-
mous tangible and intangible patrimony could now get dig-
itized thanks to NR paradigms in a cheap and fast way [18].
For these reasons, is it crucial to tackle the aforementioned
challenges to elucidate the inner workings of such algo-
rithms to ensure that their decisions are understandable and
accountable to guarantee NR reliability, fairness, and im-
pact.



Reliability Reliability refers to the ability of AI applica-
tions to comply with data protection providing high accu-
racy and completeness considering both input datasets used
to develop and train the models, and their outcomes [23,
45]. For NR to be reliable, we should first consider the com-
pleteness of the data. We should, in general, acquire around
50 and 150 pictures based on the object complexity, follow-
ing a spherical omnidirectional approach to optimize NR
methods [65]. Even having at our disposal such pictures,
and techniques to extract 3D geometric structures from the
optimized networks, like marching cubes for NeRFs and
Poisson reconstruction from point clouds, which could dis-
card several high-frequency details [36]. Moreover, such a
quantity of pictures could not be available for different CCI
items (due to objects that do not exist anymore, or that can’t
be moved to be captured from all sides [38]). Even adopting
few-shot NR architectures [66, 101] we should have at our
disposal, 3 to 9 sparse viewpoints to have reasonable, but
noncomparable quantitative-qualitative results. To visually
explore such a concept, we re-trained one of the SOTA for
few-shot NeRFs, named FreeNeRF [101], using the same
3-image setting reported by the authors, depicting the re-
sults in Figure 2. As can be qualitatively appreciated, dif-
ferent parts of the synthesized views present artifacts and
incomplete geometrical structures. It is worth highlighting
that such artifacts were verified on pictures taken in a con-
trolled laboratory setting, with fixed illumination and cam-
era poses. This raises ethical concerns related to the missing
data biases, i.e., the lack of data from underrepresented re-
gions, cultures, and objects [70]. Such bias could negatively
influence the training of NR, creating distorted geometries
and textures [102]. Such bias also involves camera pose es-

Figure 2. FreeNeRF [101] trained on 3 images from the DTU
dataset with the same setting provided by the original authors
and three synthesized novel views compared against their ground
truths.

timation, which is a necessary step for NR in case pictures
were taken with classical RGB cameras [69]. In particu-
lar, this raises two ethical concerns: (i) camera pose esti-
mation algorithms could provide inaccurate estimation or

(ii) non-converge. Such situations mostly regard cases of
few-shot settings with low scene coverage and in-the-wild
settings [8, 20, 41, 59]. Recent methods based on Diffu-
sion Models are emerging, with preliminary results towards
a few image camera pose estimations, which however only
work on fixed environmental conditions [103]. Considering
these concerns, rigorous quantitative and qualitative valida-
tion of the fidelity of collected/generated data is necessary
to determine the reliability of NR.

Trustworthiness Trustworthiness refers to the capacity of
AI systems to be ethical towards transparency, accountabil-
ity, and respect for human values and rights [45]. A trust-
worthy system not only produces accurate and consistent
results but also operates in a manner that aligns with eth-
ical principles and societal expectations [24]. Considering
such a large definition, we here contextualize the trust in
NR paradigms, in terms of technical robustness (the abil-
ity of the system to function reliably and effectively), and
social robustness (the ability of the system to integrate and
operate ethically in different social contexts) [70, 72]. Such
models must demonstrate stability and reliability in their
predicted generations maintaining coherent performances,
most of all in use cases related to CCI, where complex ob-
jects, dresses, buildings, and variable illumination condi-
tions would be aspects of their everyday usage [70]. Such
a principle is strongly bonded and shares the same reflec-
tions of reliability and responsibility. To demonstrate trust,
novel empirical frameworks should be defined to take into
account the performance of such models in extreme cases
(e.g., strong luminance, one-shot settings), where there is
missing information about the scene or the object we want
to reconstruct [19].

Sustainability The ethical dimensions of sustainability
represent a critical focal factor within contemporary AI
research and development [23, 90]. Central to this dis-
course is a comprehensive understanding of the environ-
mental impact and optimizing resources for models’ life-
cycle, spanning data collection, model training, and de-
ployment phases. NR research should so analyze the
environmental footprint stemming from various computa-
tional activities integral to model development and render-
ing pipelines [45]. Data collection, iterative model training
procedures, and model deployment exert considerable en-
ergy demands [49, 75]. Smart capture data setting and train-
ing strategies should be adopted to define computationally
efficient processes to minimize energy waste [37]. For ex-
ample, intelligent protocols could be adopted to reduce the
number of cameras and/or GPU processing techniques for
camera pose estimation [98]. Also, indirect sources of en-
ergy consumption activities like human photographer trans-
portation, picture capture settings, digital photography, data



transmission, and storage should be taken into account [7].
Considering model training and deployment, relevant ef-
forts should involve the refinement of model architectures
to optimize computational efficiency, taking into account
the usage of lower-image resolutions to reduce memory and
teraflops, the exploitation of optimized hardware systems,
and the adoption of renewable energy sources. In particular
considering model architectures, distillation or quantization
techniques could be adopted to optimize NR training and
deployment [35, 80]. Sustainable practices are necessary to
reduce these impacts and promote environmental responsi-
bility. This includes optimizing models, training pipelines,
and infrastructure to minimize energy consumption, con-
sidering the environmental implications at every stage of
the NR workflow. By prioritizing sustainability in develop-
ment and deployment, stakeholders can minimize the envi-
ronmental footprint of NR and contribute to a more sustain-
able digital ecosystem.

Fairness Fairness in AI encompasses justice, consis-
tency, inclusion, equality, non-bias, and non-discrimination,
which denotes principles and equitable treatment of individ-
uals and communities [23, 90]. Also, NR systems must en-
sure their rights, dignity, and opportunities are upheld and
respected [45]. Considering such principle, NR should pro-
duce consistent results that are unbiased and fair across dif-
ferent demographics, environments, and scenarios. Such
principles are particularly at risk when considering NR
methods with prior knowledge, or those that exploit reg-
ularization and optimizations for few or one-shot settings
(e.g. synthetic generation from other views or ignore high-
frequency details) [55, 66, 101, 106]. Ensuring unbiased
and fair outcomes for NR necessitates so careful consid-
eration of potential biases introduced during pre-training,
which can influence the generation of outputs in ways that
exacerbate existing inequalities or inaccuracies [55, 101].
This bias may amount to cultural, social, or historical ones,
inherent in the training data or underlying assumptions em-
bedded within the model architecture, especially for un-
represented items [3, 99]. At the same time, NR archi-
tectures that exploit strategies for few or one-shot settings
(e.g., overlook high-frequency details or synthesize novel
3d views) [54, 55, 66, 101] can contribute to disparities in
the representation and depiction of scenes or objects within
NR outputs (creating similar phenomena to the one depicted
in Figure 2). Such oversights may affect certain features
or characteristics, leading to biased or unfair outcomes,
mostly in contexts where high-frequency detail is essential
for accurate representation (e.g., dance, fashion, art). To
ameliorate these phenomena, data quality and bias analysis
must be performed, along with bias examination of the pre-
trained knowledge learned by the models. Moreover, tech-
nical improvements in architectures, optimization losses,

regularization, and generative models should be fostered
(in particular considering domain adaption paradigms [46]).
This holistically includes rigorous evaluation and validation
of biases, as well as the incorporation of diversity consider-
ations into model design and development. To this date, a
patch-wise level combination of quantitative metrics should
be applied, like combining PSNR, LPIPS, and MSE for
novel view synthesis and DICE, DMax, ASDlike for 3D
meshes and Chamfer, Hausdorff, and Earth-Mover’s dis-
tances for synthesized point clouds [6, 22, 61, 104]. The
focus of such quantitative analysis should in particular re-
gard cases where limited training data (few or one shot) are
employed, considering that several artifacts could be gener-
ated and a small change in the input data can lead to signif-
icantly different representations [66, 101].

4. Results and Discussions
We here summarise the key ethical principles and chal-
lenges of NR in CCI in a framework, highlighting techni-
cal risks we aim to mitigate. Table 1 schematically reports
the findings produced from our investigation. The ethical
documents and the scientific literature acted as mediators,
bridging data related to CCI and AI ethical principles to
key ethical risks of NR applied to them, providing a robust
basis for defining fair regulations. In particular, considering
CCI items that naturally exhibit ethical issues like bias, fair-
ness, and responsibility and are prone to define reliability
concerns. Such an ethical framework, should in principle
support stakeholders in the individuation of principles and
responsibilities that should be considered when designing,
implementing, monitoring, and evaluating NR in CCI.

Several solutions can be implemented to reduce the iden-
tified ethical risks associated with NR. First, addressing the
challenge of transparency and explainability requires com-
prehensive documentation of the data collection process
and efforts to improve the description and interpretability
of NR generative pipelines. In such a context, we could
also use well-established explainability paradigms [2, 95]
to describe how NR models learn from data and generate
outputs. To mitigate reliability-related risks, rigorous test-
ing and validation protocols should be established to ver-
ify the accuracy and consistency of NR reconstructions, in
high-variance settings, including extreme cases (e.g., poor
lighting., and occluded objects). However, reliability goes
beyond technical stability and includes social aspects that
should be considered developing NR model. It becomes
mandatory to include social factors such as cultural sensi-
tivity, and historical accuracy narration, collaborating with
domain experts in a multi-disciplinary approach [70]. Sus-
tainability concerns can be addressed by optimizing multi-
camera hardware, and model architectures while adopting
energy-efficient optimization algorithms and hardware sys-
tems [4]. In particular, adopting energy-efficient algorithms



Table 1. Neural Rendering ethical principles, challenges, and risks detailed starting from the designed ethical framework.

Ethical Principle Challenges Technical Risks Detailed Explanation
Transparency and
Explainability

Understanding complex AI
models and validate data
collection process

- Lack of interpretability
- Missing description of data collection
steps
- Lack of controllability for erroneous
reconstructions

Understanding data collection process and how NR
models learn from data and produce their outputs. NR
approaches require additional efforts to elucidate the
inner workings of comprehensibility and accountability.
Transparency is crucial to understand decision-making
processes.

Reliability Ensuring accuracy of
reconstructions

- Inconsistent outputs due to few or
one-shot;
- Hard camera estimation due to data
scarcity;
- Novel view synthesis and geometrical
outputs with low veridicity
- Bias of pre-trained NR methods

Ensuring the accuracy of input data and generated
reconstructions is crucial in CCI context. Validation
frameworks applying quantitative-qualitative analysis
should be designed to measure the consistency and
fidelity of the generation and perform bias analysis. At
the same time, novel models should be defined to
reconstruct camera poses for a few shot settings,
considering objects that do not exist anymore.

Trustworthiness Demonstrating stability and
generalization in different
(social) environments

- Lack of visual generalization
- Inconsistent Geometrical Representation
- Missing social considerations into the
system’s functionality

Building trust in the stability and generalization
capabilities of NR models. Trust depends on technical
robustness and the ability to generalize. Novel empirical
frameworks are needed to demonstrate reliability and
build user confidence. It should also take into account
the social dimension (i.e. ability to be applied in
different social contexts).

Sustainability Minimizing environmental
impact

- High computational demand
- Energy cost to create and maintain a
capture setting

Considering the environmental impact and economical
aspects of NR. Sustainable practices, such as optimizing
model architectures, and green computing infrastructure
are necessary to reduce environmental footprint. Also,
indirect energy costs like picture capture setting, digital
photography energy waste, transport, and energy
consumption for data transmission and storage.

Fairness Unbiased and fair results - Biased NR prior knowledge
- Artifacts caused by NR paradigms which
exploit regularization, synthetic
generation or ignore high-frequency
details

Ensuring unbiased and fair outcomes for NR with prior
knowledge. Addressing biases introduced during
training is crucial as they can propagate through the
model and affect generated outputs (considering NR
methods that have prior knowledge). Fairness is
especially at risk in cases of limited training data and/or
integration of auxiliary networks.

Responsibility Ethical data ownership an
authenticity

- Misuse of generated data
- Accountability for unfaithful generation
- Intellectual property

Upholding ethical data ownership, intellectual property,
usage, and authenticity. Responsible data ownership and
adherence to ethical guidelines are essential to maintain
the integrity and legality of applications.

involves implementing techniques such as model pruning,
quantization, and compression, which reduce the compu-
tational workload with an often negligible loss in perfor-
mances [50]. Ensuring fairness requires careful considera-
tion of addressing biases in training data and model archi-
tectures. For example, imagine digitizing ancient sculptures
from various civilizations for virtual museum exhibits. Bi-
ases in the training data, such as a disproportionate focus on
artifacts, could led the NR model to prioritize reconstruc-
tions of artifacts from dominant cultures, neglecting others.
To mitigate biases, we can curate a diverse training dataset,
including artifacts from different cultures, periods, and ge-
ographical regions. The integration of auxiliary networks
to detect and correct biases in the rendering process can
improve the fairness of NR outputs. Finally, responsibility
in NR requires ethical data ownership practices, protection
against misuse of generated data, and ensuring faithful gen-
eration following ethical guidelines and legal frameworks.
This could include the implementation of encryption proto-
cols, and data anonymization techniques to protect the in-

tegrity and confidentiality of digitized objects.

5. Conclusions and future works

Our research explored the use of NR in CCI focusing on the
ethical considerations and relevant legal frameworks that
pertain to these domains. The output of this process is a
new ethical framework that serves as a guide for address-
ing the potential ethical risks identified in our analysis and
provides a structured approach for ethical decision-making
in the context of NR applications in CCI. We have further
elaborated on the specific ethical principles that should be
prioritized since they are crucial to ensure the responsible
use of NR. We also highlighted ethical pitfalls that require
clear guidelines to protect the integrity and sustainability
of CCI sectors when applying NR technologies. For future
work, we will define ethical measurable standards, criteria,
and metrics to quantify the ethicality level of different NR
methodologies in CCI. Such a qualitative-quantitative ap-
proach will be rigorously validated across diverse contexts,
assessing its adaptability and resilience.
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