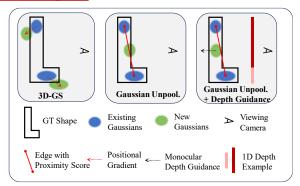


Presenter Zhiwen Fan (2 @ WaynelNR) PhD student @ UT Austin

FSGS: Real-Time Few-shot View Synthesis using Gaussian Splatting


Zehao Zhu*1, Zhiwen Fan*1, Yifan Jiang1, Wenyan Cong1, Zhangyang Wang1

*Equal Contribution, ¹UT Austin

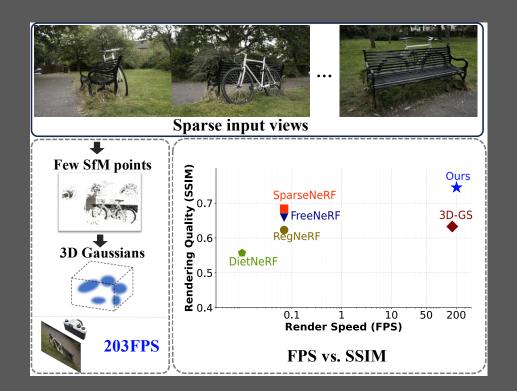
Motivation

- (i) 3D-GS performs poorly in **sparse-view** settings due to the Adaptive Density Control (ADC), while NeRF-based methods significantly lag behind in the rendering speed (0.21 FPS for SparseNeRF)
- (ii) Better ADC strategy for cloning and growing Gaussians to fill missing regions in 3D.
- (iii) Adopt efficient priors into training to mitigate the problem of recovering 3D from very limited 2D images.

Techniques

Gaussian Unpooling:

We construct proximity graphs between existing 3D Gaussians, and clone new gaussians between the top-K nearest Gaussians.


Geometric Regularizations:

The relative relationship of depth values is used for regularizing the scene geometry optimization.

Pseudo-view Augmentation:

Pseudo-views are sampled closed to the training camera location, to address the overfitting to sparse training views.

FSGS achieves superior sparse-view synthesis quality, while operating in real-time.

FSGS surpasses 3D-GS in both accuracy and FPS.

FSGS is ~2,000x faster than previous best SparseNeRF

> Takeaways

- (i) 3D-GS is not good at handle sparse-view setting.
- (ii) ADC in 3D-GS requires significant hyperparameter tuning to achieve a good performance under sparse-view setting.

> Experimental Results

Methods	Mip-NeRF360 (1/4 Resolution, 24-view)					
	FPS↑	PSNR↑	SSIM↑	LPIPS↓		
Mip-NeRF	0.07	19.78	0.530	0.431		
3D-GS	145	19.93	0.588	0.401		
DietNeRF	0.03	19.11	0.482	0.452		
RegNeRF	0.04	20.55	0.546	0.398		
FreeNeRF	0.04	21.04	0.587	0.377		
SparseNeRF	0.04	21.13	0.600	0.389		
Ours	203	22.82	0.693	0.293		

Methods	$LLFF(1006 \times 762, 3\text{-view})$					
Wiethous	FPS↑	PSNR↑	SSIM↑	LPIPS↓		
Mip-NeRF	0.14	15.22	0.351	0.540		
3D-GS	312	16.94	0.488	0.402		
DietNeRF	0.08	13.86	0.305	0.578		
RegNeRF	0.14	18.66	0.535	0.411		
FreeNeRF	0.14	19.13	0.562	0.384		
SparseNeRF	0.14	19.07	0.564	0.392		
Ours	351	19.71	0.642	0.283		

Quantitative Results.

Gaussian Jnpooling	Geometry Guidance	Pseudo Views	PSNR↑	SSIM↑	LPIPS↓
Х	Х	X	17.83	0.582	0.321
✓	X	X	18.64	0.603	0.311
✓	✓	X	19.93	0.644	0.283
✓	✓	✓	20.43	0.682	0.248

Ablation Study.