An Ethical Framework for Trustworthy Neural Rendering applied in Cultural Heritage and Creative Industries

• UNESCO's Recommendation on AI and

Guidelines for CCI

Intellectual property

vision robotics artificial intelligence

L. Stacchio¹, E. Balloni², L. Gorgoglione², R. Pierdicca², A. Mancini², E. Frontoni¹, B. Giovanola¹, S. Tiribelli¹, M. Paolanti¹, P. Zingaretti²

¹University of Macerata, ²Università Politecnica delle Marche

ntroduction

Motivations

- Artificial Intelligence (AI) advancements have impacted various sectors, including Cultural (CH) Heritage Creative and Industries (CI)
- Neural Rendering (NR) techniques, such as Neural Radiance Fields and **3D** Gaussian (NeRFs) (3DGS), **Splatting** improve digitization of 3D objects from 2D images
- concerns remain largely unexplored, particularly around the authenticity, intellectual property, decision data-driven NR-generated implications content.

Key Objectives

- Identify ethical pitfalls of NR paradigms in CCI
- Design an **ethical framework** based on global guidelines
- Provide multidisciplinary guidelines for developing NR solutions

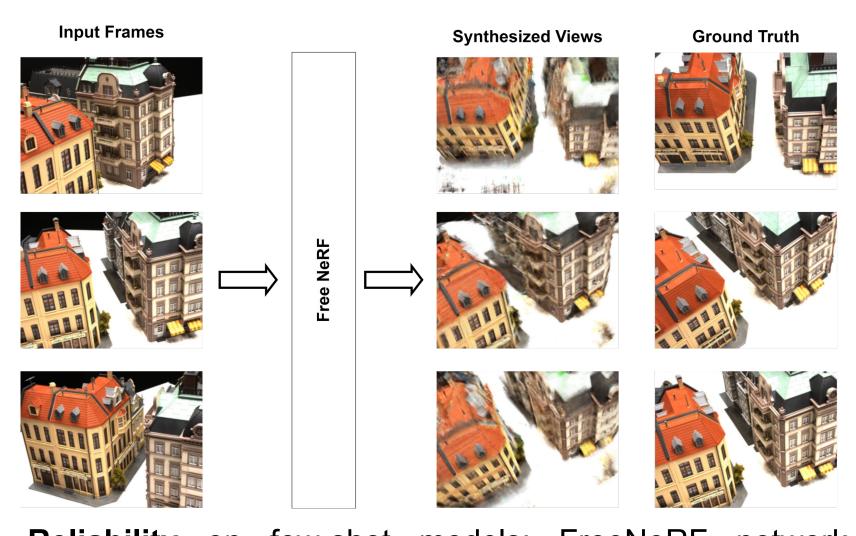
Acknowledgements -

CTE Square Pesaro CUP D74J22000930008 FSC MISE 2014-2020

Methodology Framework

POLICY FRAMEWORKS FOR NR IN CCI ETHICAL RISKS & PRINCIPLES RELIABILITY TRANSPARENCY FAIRNESS Al European Commission Documents Assessment List for Trustworthy Artificial Intelligence (ALTAI) **SUSTAINABILITY RESPONSIBILITY** • International Council of Museums code of

TRUSTWORTHINESS


• Adhere to legal and intellectual property frameworks and protect data integrity.

Ethical Principles in NR

- Transparency and Explainability: Clear communication of processes, algorithms, and outcomes
- Reliability: Accuracy and consistency of NR reconstructions
- Trustworthiness: Stability and generalization in various environments
- Sustainability: Minimizing environmental impact
- Fairness: Ensuring unbiased and fair results
- Responsibility: Ethical data ownership and authenticity

(III)—Results

Ethical Principle	Challenges	Technical Risks	Possible Solutions
Transparency and Explainability	Understanding complex AI models and validate data collection process	 Lack of interpretability Missing description of data collection steps Lack of controllability for erroneous reconstructions 	 Provide clear and detailed documentation of data collection processes Use visual and interpretative methods to make model decisions understandable Maintain open communication about processes and outcomes to stakeholders.
Reliability	Ensuring accuracy of reconstructions	 Inconsistent outputs due to few or one-shot Hard camera estimation due to data scarcity Novel view synthesis and geometrical outputs with low veridicity Bias of pre-trained NR methods 	 Establish rigorous testing protocols to ensure accuracy and consistency Collect comprehensive data, ideally 50-150 images per object Conduct bias analysis on training data and pre-trained models.
Trustworthiness	Demonstrating stability and generalization in different (social) environments	 Lack of visual generalization Inconsistent Geometrical Representation Missing social considerations into the system's functionality 	 Develop frameworks to demonstrate model reliability and stability Integrate social considerations and collaborate with domain experts.
Sustainability	Minimizing environmental impact	 High computational demand Energy cost to create and maintain a capture setting 	 Optimize model architectures and training processes to reduce energy consumption Use renewable energy and energy-efficient hardware Implement protocols to minimize the number of cameras and optimize GPU usage.
Fairness	Unbiased and fair results	 Biased NR prior knowledge Artifacts caused by NR paradigms which exploit regularization, synthetic generation or ignore high-frequency details 	 Use auxiliary networks to detect and correct biases Ensure datasets are diverse in culture, periods, and regions Enhance model architectures and optimization strategies
Responsibility	Ethical data ownership an authenticity	Misuse of generated data Accountability for unfaithful generation	 Follow ethical data ownership and secure handling protocol Implement validation protocols to ensure data authenticity

Reliability on few-shot models: FreeNeRF network trained on 3 images from the DTU dataset with the same setting provided by the original authors and 3 synthesized novel views compared against their ground truths